

TEMPERATURE PLOT FOR OKLAHOMA CITY, OKLAHOMA FOR 2024

PRECIPITATION PLOT FOR OKLAHOMA CITY, OKLAHOMA FOR 2024

RAINFALL SUMMARIES BY OKLAHOMA CLIMATE DIVISION

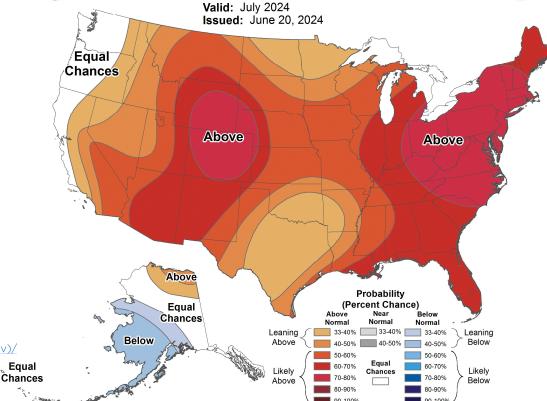
Calendar	Year 01-Jan-20:	24 though	26-Jun-2024	¥:		10	
Climate Division	Total Rainfall	Departure from Normal	Pct of Normal	Rank since 1921 (88 periods)	Driest on Record	Wettest on Record	
W. Central	10.01"	-4.51"	69%	16th driest	4.18" (2011)	25.45" (1957)	
Central	17.43"	-1.76"	91%	51st driest	8.23" (1936)	33.82" (1957)	
S. Central	24.49"	+3.31"	116%	20th wettest	9.80" (1963)	41.81" (2015)	
Statewide	17.96"	-0.56"	97%	49th wettest	8.85" (1936)	32.32" (1957)	

26-Jun-2024

Water Year: 01-Oct-2023 through

				100			
Climate Division	Total Rainfall	Departure from Normal	Pct of Normal	Rank since 1921 (88 periods)	Driest on Record	Wettest on Record	
W. Central	16.80"	-3.26"	84%	39th driest	8.72" (2010-11)	33.92" (2018-19)	
Central	24.93"	-2.37"	91%	51st wettest	14.09" (1995-96)	42.19" (1984-85)	
S. Central	35.27"	+4.40"	114%	19th wettest	13.18" (1924-25)	50.64" (2014-15)	
Statewide	25.95"	-0.65"	98%	42nd wettest	13.91" (1955-56)	38.38" (2018-19)	

Summer June 01 through			26-Jun-2024	10. 1		2	
Climate Division	Total Rainfall Departure from Normal		Pct of Normal	Rank since 1921 (88 periods)	Driest on Record	Wettest on Record	
W. Central	1.17"	-2.54"	31%	9th driest	0.11" (1933)	8.52" (1962)	
Central	2.67"	-1.71"	61%	32nd driest	0.34" (1933)	8.85" (2007)	
S. Central	3.91"	-0.40"	91%	43rd wettest	0.11" (2011)	9.10" (2015)	
Statewide	3.09"	-0.94"	77%	42nd driest	0.36" (1933)	7.46" (1989)	


The climate divisions shown include statewide totals, central Oklahoma totals, and totals for the two divisions which have Canton Lake and Lake Atoka—major water sources for central Oklahoma.

NOAA ONE-MONTH TEMPERATURE OUTLOOK

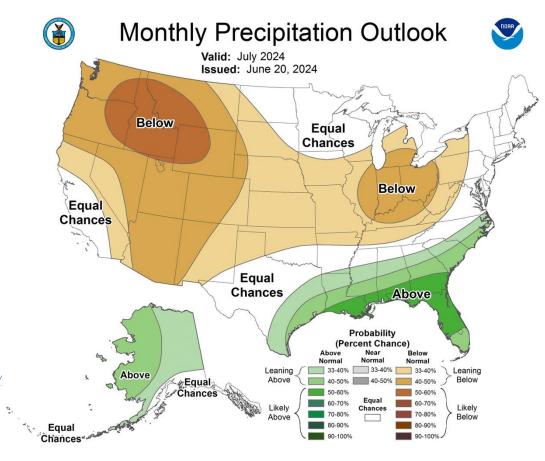
White areas are shown as EC (Equal Chance) on these maps represent areas where there are no strong climate signals from the climate tools to have skill in preferring one category over another.

That doesn't mean that there are equal chances of each of the categories occurring – it means that currently there is no skill in identifying the most likely category. In these areas, it is best to be prepared for all possibilities.

Monthly Temperature Outlook

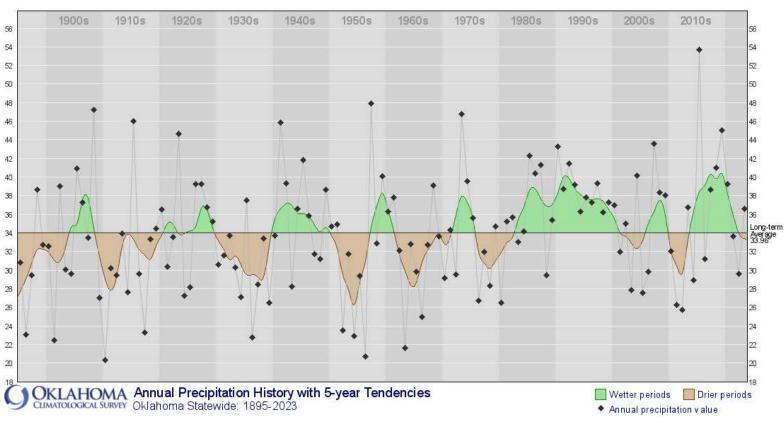
Climate Prediction Center - Updated OFFICIAL 30-Day Forecasts (noaa.gov)/

NOAA ONE-MONTH PRECIPITATION OUTLOOK



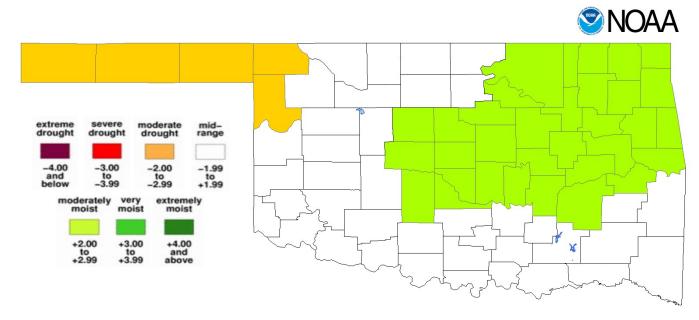
White areas are shown as EC (Equal Chance) on these maps represent areas where there are no strong climate signals from the climate tools to have skill in preferring one category over another.

That doesn't mean that there are equal chances of each of the categories occurring – it means that currently there is no skill in identifying the most likely category. In these areas, it is best to be prepared for all possibilities.


Climate Prediction Center - Updated OFFICIAL 30-Day Forecasts (noaa.gov)/

Annual Precipitation History with 5-Year Tendencies

This graph shows the cyclical nature of wet and drought periods in Oklahoma. The black dots represent the annual precipitation for that particular year. The line represents the annual precipitation data smoothed over five years.


This smoothed line shows well the wet periods (shaded green) and the drought periods (shaded brown). The drought cycles appear to average about five to eight years in length.

7

http://climate.ok.gov/index.php/climate/climate_trends/precipitation_history_annual_statewide/CD00/prcp/Annual/oklahoma_south-central_u.s

DROUGHT SEVERITY INDEX BY CLIMATE DIVISION

PALMER VALUE

22 JUN 2024

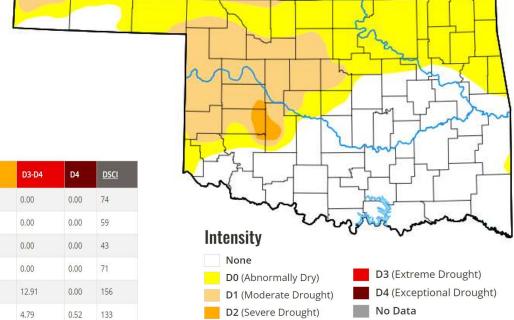
The Palmer Drought Index (PDI) maps show long-term (cumulative) meteorological drought and wet conditions.

The maps show how the geographical pattern of the long-term moisture conditions has changed over the last 12 months.

On these maps, the red shading denotes drought conditions while the green shading indicates wet conditions.

8

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/cdus/palmer_drought/wpdsouth.txt


U.S. DROUGHT MONITOR - OKLAHOMA

June 27, 2024

Abnormal dryness or drought are currently affecting approximately 273,989 people in Oklahoma.

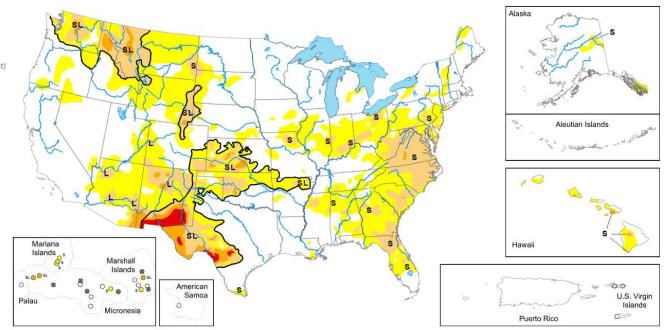
Week	Date	None	D0-D4	D1-D4	D2-D4	D3-D4	D4	<u>DSCI</u>
Current	2024-06-25	47.88	52.12	20.48	1.03	0.00	0.00	74
Last Week to Current	2024-06-18	62.83	37.17	20.82	1.20	0.00	0.00	59
3 Months Ago to Current	2024-03-26	66.24	33.76	8.83	0.19	0.00	0.00	43
Start of Calendar Year to Current	2023-12-26	53.62	46.38	21.64	3.08	0.00	0.00	71
Start of Water Year to Current	2023-09-26	34.29	65.71	46.76	30.93	12.91	0.00	156
One Year Ago to Current	2023-06-27	23.06	76.94	36.08	14.26	4.79	0.52	133

U.S. DROUGHT MONITOR NATIONWIDE MAP

Map released: June 27, 2024

Data valid: June 25, 2024

Intensity and Impacts

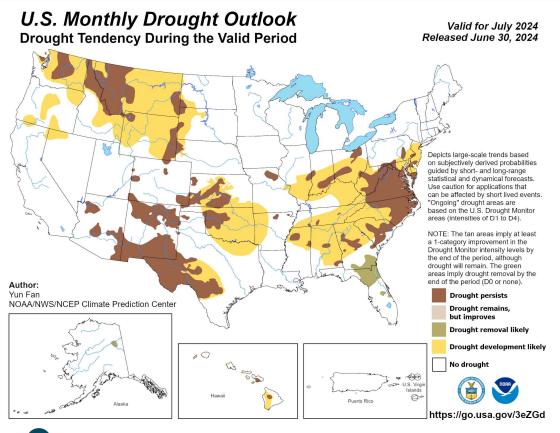


United States and Puerto Rico Author(s):

Deborah Bathke, National Drought Mitigation Center

Pacific Islands and Virgin Islands Author(s): Ahira Sanchez-Lugo, NOAA/NCEI

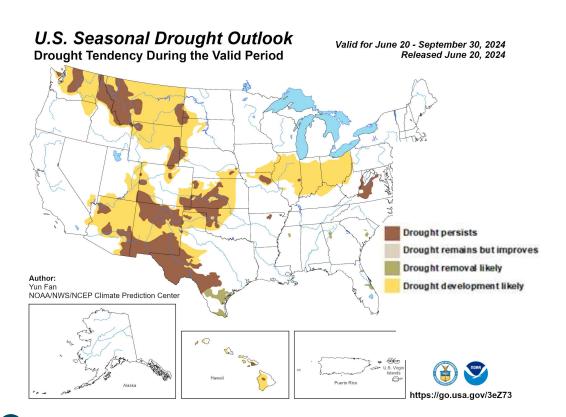
United States and Puerto Rico Author(s):


Adam Hartman, NOAA/NWS/NCEP/CPC

Pacific Islands and Virgin Islands Author(s):
Rocky Bilotta, NOAA/NCEI

U.S. DROUGHT MONITOR MONTHLY DROUGHT OUTLOOK MAP

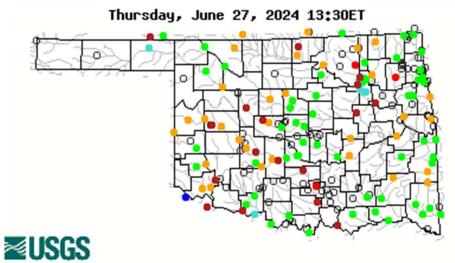
Depicts large-scale trends based on subjectively derived probabilities guided by short and long-range statistical and dynamical forecasts. Use caution for applications that can be affected by short lived events. "Ongoing" drought areas are based on the U.S. Drought Monitor areas (intensities of D1 to D4).


NOTE: The tan areas imply at least a 1-category improvement in the Drought Monitor intensity levels by the end of the period, although drought will remain. The green areas imply drought removal by the end of the period (D0 or none).

11

http://www.cpc.ncep.noaa.gov/products/expert_assessment/mdo_summary.php

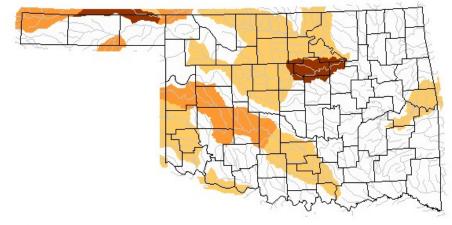
U.S. DROUGHT MONITOR SEASONAL DROUGHT OUTLOOK MAP



Depicts large-scale trends based on subjectively derived probabilities guided by short and long-range statistical and dynamical forecasts. Use caution for applications that can be affected by short lived events. "Ongoing" drought areas are based on the U.S. Drought Monitor areas (intensities of D1 to D4).

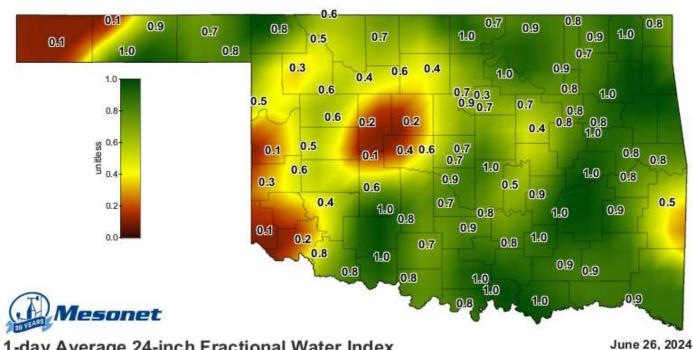
NOTE: The tan areas imply at least a 1-category improvement in the Drought Monitor intensity levels by the end of the period, although drought will remain. The green areas imply drought removal by the end of the period (DO or none).

USGS STREAMFLOW DATA



		Explar	nation - F	Percent	ile classe	s	
•	•	•	•		•	•	0
Low <10 Much below normal	10-24	25-75	76-90	>90	Not realized		
		Below normal	Normal	Above normal	Much above normal	High	Not-ranked

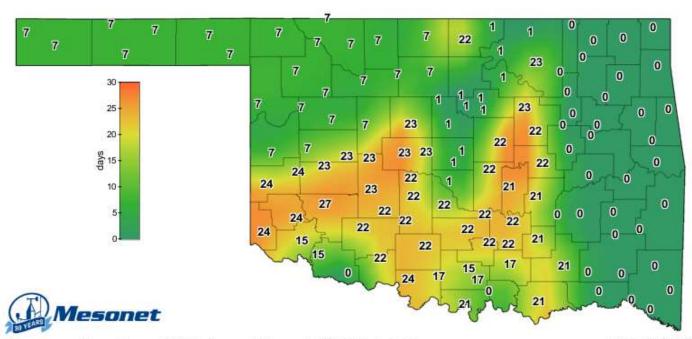
Below normal 28-day average streamflow




Z.	USGS

	Explanation	- Percentile clas	ses	_
Low	<=5	6-9	10-24	Insufficient data
Extreme hydrologic drought	Severe hydrologic drought	Moderate hydrologic drought	Below normal	for a hydrolog s region

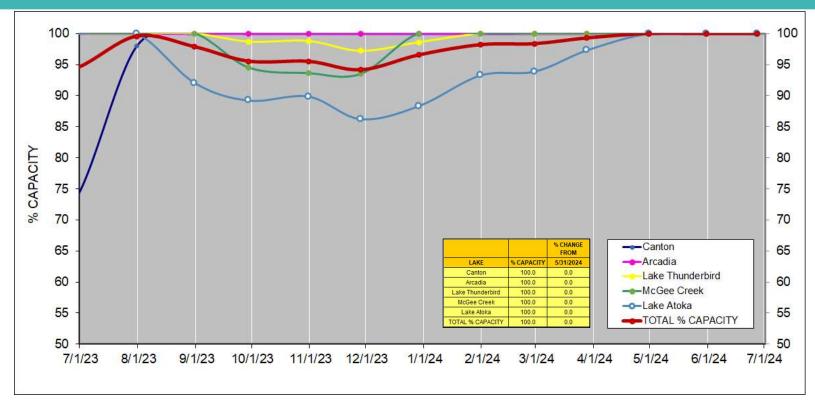
SOIL MOISTURE MAP


1-day Average 24-inch Fractional Water Index

Created 7:30:14 AM June 27, 2024 CDT. © Copyright 2024

http://www.mesonet.org/index.php/weather/map/24-inch_fractional_water_index/soil_moisture

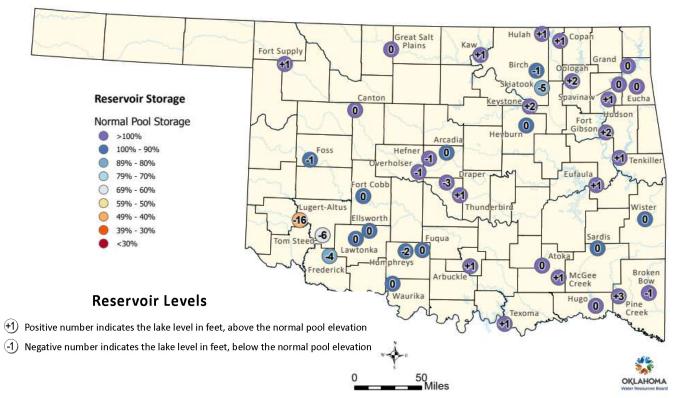
CONSECUTIVE DAYS WITHOUT RAINFALL MAP



Consecutive Days With Less Than 0.25" Rainfall

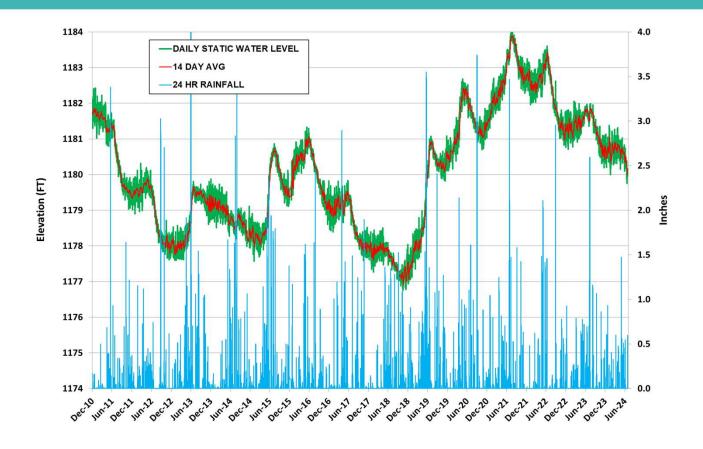
June 26, 2024 Created 8:15:02 AM June 27, 2024 CDT, © Copyright 2024

PERCENTAGE OF SURFACE WATER CONSERVATION CAPACITY IN CENTRAL OK RESERVOIRS



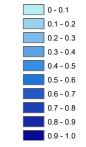
Lake Hefner and Lake Overholser are terminal storage for Canton Lake. Lake Draper is terminal storage for McGee Creek and Atoka Lakes.

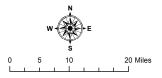
OKLAHOMA RESERVOIR LEVELS AND STORAGE


OKLAHOMA RESERVOIR LEVELS AND STORAGE AS OF 6/24/2024

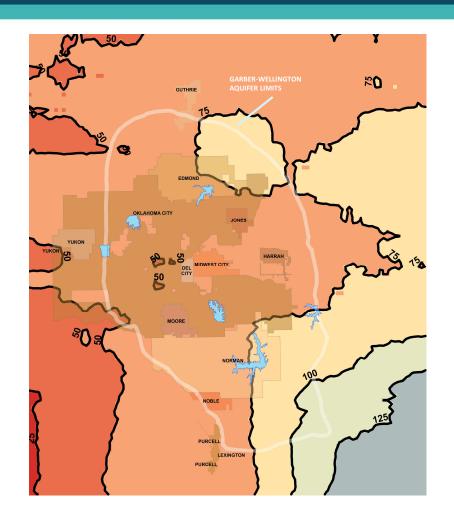
This map shows reservoir storage as a percentage of normal pool storage capacity. The source information was collected from real-time lake gages monitored by the U.S. Army Corps of Engineers (https://www.swt-wc.usace.army.mil/Daily_Morning_Reservoir_Report.pdf), and the U.S. Geological Survey (USGS Current Conditions for USGS 07333010 Atoka Reservoir near Stringtown, OK). For more information, please visit the OWRB's website: (https://www.owrb.ok.gov).

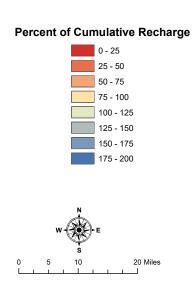
GROUNDWATER LEVELS SPENCER MESONET STATION


MONTHLY AQUIFER RECHARGE



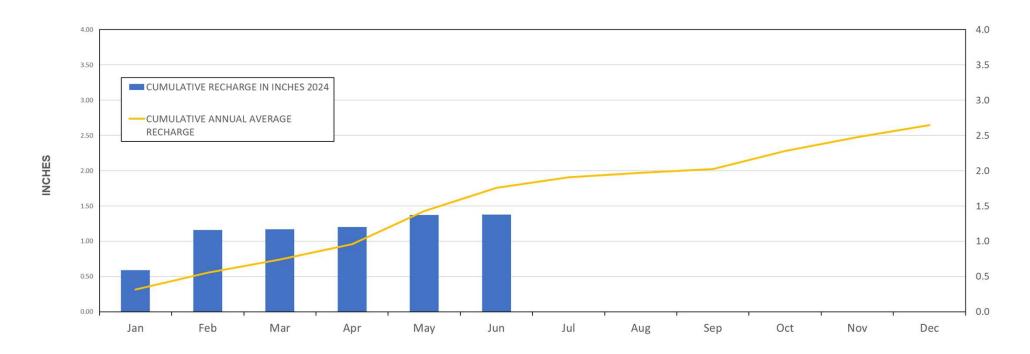
- Mean aquifer recharge in June 2024 was 0.01 inches.
- Normal mean recharge for June is 0.33 inches.
- We are -0.38 inches below normal for 2024.



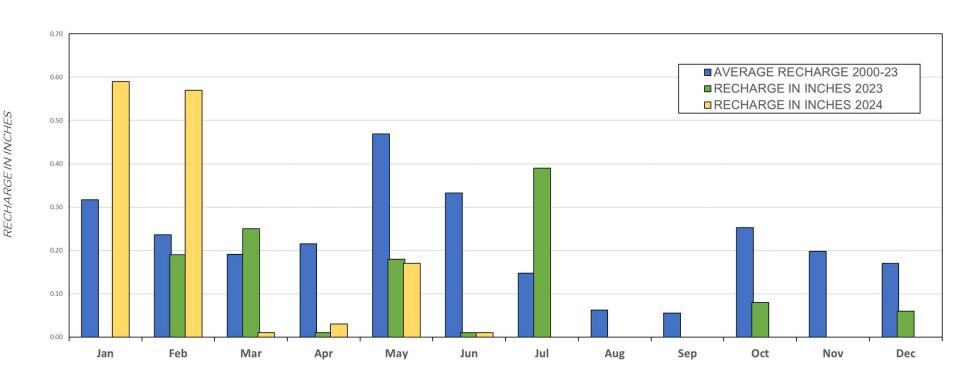


PERCENT TOTAL CUMULATIVE AQUIFER RECHARGE – Last 12 Months

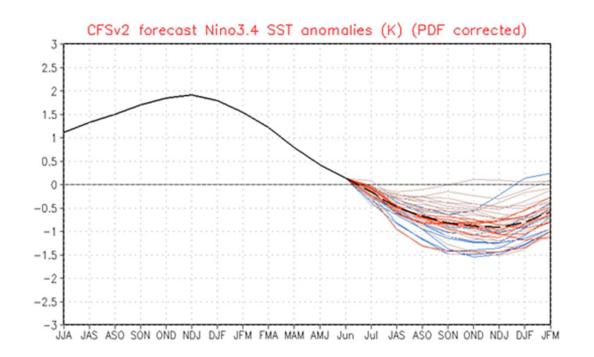
- Most of the recharge in the past 12 months was south and east of the metropolitan area.
- June 2024 had essentially no recharge.
- Over the past 12 months the metropolitan area has only received 50% to 75% of normal recharge.

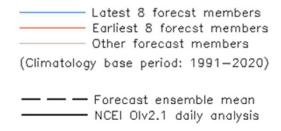


RECHARGE CHARTS CENTRAL OKLAHOMA AQUIFER SYSTEM

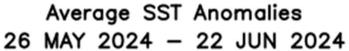

ACCUMULATED CENTRAL OKLAHOMA AQUIFER SYSTEM RECHARGE 2024

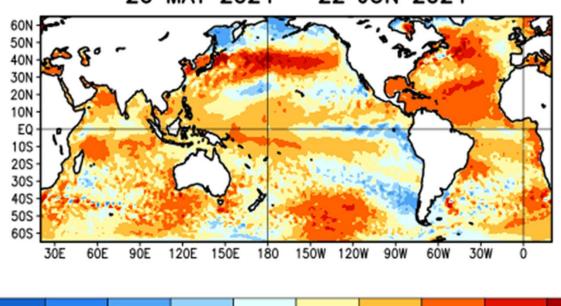
RECHARGE CHARTS CENTRAL OKLAHOMA AQUIFER SYSTEM CONTINUED




MONTHLY AQUIFER RECHARGE 2024

ENSO CYCLE - RECENT EVOLUTION, CURRENT STATUS AND PREDICTIONS





ENSO CYCLE - RECENT EVOLUTION, CURRENT STATUS AND PREDICTIONS

0

0.5

2

3

-0.5

-2

SUMMARY

ENSO ALERT SYSTEM STATUS: El Niño Advisory / La Niña Watch

- ENSO-neutral conditions are present.
- Equatorial sea surface temperatures (SSTs) are above average in the west-central Pacific Ocean, near average in the east-central Pacific Ocean, and below-average in the far eastern Pacific Ocean.
- La Niña is favored to develop during July-September (65% chance) and persist into the Northern Hemisphere winter 2024-25 (85% chance during November-January).

